Abstract
A flow-injection indirect spectrophotometric method for the determination of ascorbic acid (AA) in pharmaceutical preparations is proposed. The method is based on the reduction of iron(III) to iron(II) by the AA, and by the subsequent reaction of the produced iron(II) with 2,4,6-tripyridyl-s-triazine (TPTZ) in buffered medium (pH=3.6) to form a coloured complex (λmax=593nm). The three-line manifold with one reaction coil was used. The linear range of the method is from 0.08 to 10μM of ascorbic acid, with the detection limit 24nM of AA. The proposed method is simple, rapid (sampling rate of 180 samples per hour), sensitive and reproducible (RSD 0.8%, n=100). The proposed method is very selective, because only the reducing substances with standard (formal) potentials lower than 0.6V would have the thermodynamic predisposition to interfere in the proposed method. Tested reducing substances (thiol compounds) did not give serious errors when present at the same concentrations as the ascorbic acid. The proposed method can be applied for the determination of AA in pharmaceutical preparations, down to picomolar quantity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.