Abstract

A continuous-flow procedure is proposed for the indirect determination of ascorbic acid, based on its reducing properties because of the oxidation of its 1,2-enediol group. Iron(III) was injected into a 1,10-phenanthroline stream, which was mixed with a sample carrier and then with a sodium picrate solution stream. In these conditions the iron(III) was reduced to iron(II) by the ascorbic acid. Thus, the iron(II) formed reacts with 1,10-phenanthroline to form a charged red complex, which with picrate ion forms a stable red-orange uncharged ion-association complex that is adsorbed “on-line” on a non-ionic polymeric adsorbent (Amberlite XAD-4), proportionally to the ascorbic acid in the sample. The unadsorbed iron was determined by flame atomic absorption spectrometry. The proposed method allows the determination of ascorbic acid in the range 0.5–25 μg ml−1 with a relative standard deviation of 2.9% at a rate of ca. 90 samples h−1. This method has been applied to the determination of ascorbic acid in pharmaceutical preparations, fruit juices and sweets. The results obtained in the analysis are compared with those provided by the 2,6-dichloroindophenol method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call