Abstract

Establishing reference intervals (RIs) for pediatric patients is crucial in clinical decision-making, and there is a critical gap of pediatric RIs in China. However, the direct sampling technique for establishing RIs is resource-intensive and ethically challenging. Indirect estimation methods, such as unsupervised clustering algorithms, have emerged as potential alternatives for predicting reference intervals. This study introduces deep graph clustering methods into indirect estimation of pediatric reference intervals. Specifically, we propose a Density Graph Deep Embedded Clustering (DGDEC) algorithm, which incorporates a density feature extractor to enhance sample representation and provides additional perspectives for distinguishing different levels of health status among populations. Additionally, we construct an adjacency matrix by computing the similarity between samples after feature enhancement. The DGDEC algorithm leverages the adjacency matrix to capture the interrelationships between patients and divides patients into different groups, thereby estimating reference intervals for the potential healthy population. The experimental results demonstrate that when compared to other indirect estimation techniques, our method ensures the predicted pediatric reference intervals in different age and gender groups are closer to the true values while maintaining good generalization performance. Additionally, through ablation experiments, our study confirms that the similarity between patients and the multi-scale density features of samples can effectively describe the potential health status of patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call