Abstract

Vascular calcification (VC) is widely considered to be a crucial clinical indicator of cardiovascular disease. Recently, certain properties of mesenchymal stem cells (MSCs) have been hypothesized to have potential in treating cardiovascular diseases. However, their effect on the initiation and progression of VC remains controversial. The present study aimed to investigate whether MSCs indirectly mediate VC and their impact on the Wnt signaling pathways. A Transwell system was selected to establish the indirect co‑culture environment, and hence, vascular smooth muscle cells (VSMCs) were indirectly co‑cultured in the presence or absence of MSCs at a ratio of 1:1. Osteogenic medium (OS) was added to imitate a calcifying environment. Fourteen days later, VSMCs in the lower layers of the Transwell plates were harvested. Alkaline phosphatase activity and calcium nodules were markedly increased in calcific VSMCs induced by OS. However, these parameters were significantly decreased in VSMCs by indirectly co‑culturing with MSCs in the same medium. Furthermore, the messenger RNA expression levels of osteopontin and osteoprotegerin were notably increased in VSMCs cultured in OS, but reduced by indirect interaction with MSCs. In addition, the activities of canonical and noncanonical Wnt ligands, wingless‑type MMTV integration site family, number5A (Wnt5a), receptor tyrosine kinase‑like orphan receptor2 (Ror2) and β‑catenin, which are important in the process of VC, were downregulated by indirect contact with MSCs in OS. Thus, indirect co‑culture with MSCs inhibits VC and downregulates the Wnt signaling pathways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call