Abstract
A time-resolved emission technique was employed to study the effect of excess protons on the fluorescence quenching process of flavin mononucleotide (FMN) in methanol-doped ice samples. We found that an excess of protons in ice has a very large effect on the fluorescence quenching whereas in liquid water the proton fluorescence quenching is rather small. We analyzed the experimental data using the Smoluchowski diffusion-assisted binary collision model. Under certain assumptions and approximations, the calculated proton diffusion constant in ice in the range of 245−265 K is about 10 times that of water at 295 K.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.