Abstract

The sensitivity of future gravitational wave (GW) observatories will be limited by thermal noise in a wide frequency band. To reduce thermal noise, the European GW observatory Einstein GW Telescope (ET) is suggested to use crystalline silicon test masses at cryogenic temperature and a laser wavelength of 1550 nm. Here, we report a measurement of the optical loss in a prototype high-resistivity crystalline silicon test mass as a function of optical intensity at room temperature. The total loss from both the bulk crystal and the surfaces was determined in a joint measurement. The characterization window ranged from small intensities below 1 W cm−2, as planned to be used in ET, up to 21 kW cm−2. A nonlinear absorption was observed for intensities above a few kW cm−2. In addition, we have observed an intensity-independent offset that possibly arises from absorption in the crystal surfaces. This absorption was estimated to αsurf ≈ 800 ppm/surface, which might be too high for a cryogenic operation of a fiber-suspended silicon test mass. Such an offset was not observed in other recent measurements that were insensitive to surface absorption. Finally, a set of further characterization measurements is proposed to clearly separate the contributions from the surfaces and the bulk crystal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.