Abstract

The successful detection of gravitational waves from astrophysical sources carried out by the laser interferometric detectors LIGO and Virgo have stimulated scientists to develop a new generation of more sensitive gravitational wave detectors. In the proposed upgrade called LIGO Voyager, silicon test masses will be cooled to cryogenic temperatures. To provide heat removal from the test masses when they absorb the laser light one can increase their thermal emissivity using a special black coating. We have studied mechanical losses in a carbon nanotube black coating deposited on silicon wafers. The additional thermal noise associated with mechanical loss in this coating was calculated using a value of the product of the coating Young’s modulus and the coating mechanical loss angle determined from the measurements. It was found that at temperatures of about 123 K, the additional thermal noise of the LIGO Voyager test mass caused by the carbon nanotube black coating deposited on its barrel is less than the noise associated with the Acktar Black coating and is 20 times less than the noise due to the optical high reflective (HR) coating of the test mass.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call