Abstract

Tobacco smoke (TS) is the source of a number of toxicants affecting the atmosphere and poses a threat to smokers and the whole community. Chemical, physical, and toxicological features of smoking products (vapors as well as mainstream, side stream, and third-hand smoke) have been investigated extensively. Special attention is paid to organic compounds (individually or in combination giving rise to peculiar molecular fingerprints), potentially able to act as “chemical signature” of TS. In this regard, the percent distribution of long-chainnormal, iso, and anteiso alkanes was ascertained as typical of TS. Nevertheless, until now no indexes have been identified as suitable for assessing the global TS contribution to environmental pollution, e.g., the TS percentage in carbonaceous aerosol and in deposited dusts, the only exception consisting in the use of nicotelline as tracer. This paper describes the results of an extensive study aimed at chemically characterizing the nonpolar lipid fraction associated to suspended particulates (PMs) and deposition dusts (DDs) collected at indoor and outdoor locations. Based on the iso, anteiso, and normal C29–C34 alkane profile in the samples as well in tobacco smoke- and no-TS-related emissions (literature data), various parameters describing the distribution of compounds were investigated. Finally, a cumulative variable was identified as the tobacco smoke impact index (TS%) suitable for estimating the TS percentage occurring in the particulate matter. The TS% rates were plotted vs. the exceedance of normal C31 alkane with respect to the average of C29 and C33 homologs, which results higher in TS than in most other emissions, revealing a link in the case of suspended particulates but not of deposited dusts. According to back analysis carried out on all particulate matter sets, it was found that traces of TS affect even remote areas, while inside the smokers’ homes the contributions of TS to PM could account for up to ~61% and ~10%, respectively, in PM and DD. This confirms the need of valuing the health risk posed by TS to humans, by means of tools easy to apply in extensive investigations.Supplementary InformationThe online version contains supplementary material available at 10.1007/s11356-021-16617-0.

Highlights

  • The negative health impact of tobacco smoking on the population has been ascertained, and this practice poses a threat to active smokers, and to people exposed to sidestream and third-hand exhausts (IARC 1986; NCR 1986; Hecht 1999)

  • Whereas it is possible to investigate the pollution in smoke chambers and tobacco smoke (TS)-affected interiors through monitoring macro-components of combustion and nicotine, this approach seems unsuitable in no-smoke locations and in open air, as well as in the case of deposited dust

  • Deposited dusts were recovered from free surfaces according to methods developed for settled matter; free and flat surfaces (0.18÷0.50 m2) sited at 1.5÷2.0 m above ground were prewashed with HPLC purity grade water, wiped with clean cotton swabs, and covered with aluminum foils previously treated with dichloromethane and acetone

Read more

Summary

Introduction

The negative health impact of tobacco smoking on the population has been ascertained, and this practice poses a threat to active smokers, and to people exposed to sidestream and third-hand exhausts (IARC 1986; NCR 1986; Hecht 1999). Whereas it is possible to investigate the pollution in smoke chambers and TS-affected interiors through monitoring macro-components of combustion and nicotine, this approach seems unsuitable in no-smoke locations and in open air, as well as in the case of deposited dust. These sites remain exposed to pollution sources prevailing by far vs TS. Despite nicotine being ubiquitous in the atmosphere and acknowledged as a tobacco marker, any attempt to link its concentrations in the air with the rate of smoking seems destined to fail

Objectives
Methods
Results
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call