Abstract

Let \(U \subset {\mathbb R}^2\) be an open subset, \(f\colon U \rightarrow f(U) \subset {\mathbb R}^2\) be an orientation reversing homeomorphism and let \(0 \in U\) be an isolated, as a~periodic orbit, fixed point. The main theorem of this paper says that if the fixed point indices \(i_{{\mathbb R}^2}(f,0)=i_{{\mathbb R}^2}(f^2,0)=1\) then there exists an orientation preserving dissipative homeomorphism $\varphi\colon {\mathbb R}^2 \rightarrow {\mathbb R}^2$ such that \(f^2=\varphi\) in a~small neighbourhood of \(0\) and \(\{0\}\) is a~global attractor for \(\varphi\). As a corollary we have that for orientation reversing planar homeomorphisms a~fixed point, which is an isolated fixed point for \(f^2\), is asymptotically stable if and only if it is stable. We also present an application to periodic differential equations with symmetries where orientation reversing homeomorphisms appear naturally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.