Abstract

Early diabetes diagnosis allows patients to begin treatment on time, reducing or eliminating the risk of serious consequences. In this paper, we propose the Neutrosophic-Adaptive Neuro-Fuzzy Inference System (N-ANFIS) for the classification of diabetes. It is an extension of the generic ANFIS model. Neutrosophic logic is capable of handling the uncertain and imprecise information of the traditional fuzzy set. The suggested method begins with the conversion of crisp values to neutrosophic sets using a trapezoidal and triangular neutrosophic membership function. These values are fed into an inferential system, which compares the most impacted value to a diagnosis. The result demonstrates that the suggested model has successfully dealt with vague information. For practical implementation, a single-value neutrosophic number has been used; it is a special case of the neutrosophic set. To highlight the promising potential of the suggested technique, an experimental investigation of the well-known Pima Indian diabetes dataset is presented. The results of our trials show that the proposed technique attained a high degree of accuracy and produced a generic model capable of effectively classifying previously unknown data. It can also surpass some of the most advanced classification algorithms based on machine learning and fuzzy systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.