Abstract
To maximize the synergistic effects of hybridized heteromaterials in terms of device performance of piezoelectric nanogenerators (PNGs), we demonstrate an unprecedented strategy for the direct growth of perovskite piezoelectric barium titanate (BTO) nanoparticles (NPs) on two-dimensional graphene oxide (GO) via a simple hydrothermal method. The mutual interactions between the strongly coupled heteromaterials in terms of their structural, chemical, and electrical variations are systematically explored. From these comprehensive spectroscopic and microscopic examinations, we ascertain that the hybridization of BTO NPs with GO enables to enhance the piezoelectric response of the PNGs compared with those of pristine BTO NPs-based PNGs and simply mixed BTO NPs/GO-based PNGs. This can be understood by the synergistic interplay of the heteromaterials associated with (i) the formation of homogeneous size distribution of the BTO NPs after the hybridization, (ii) healing of oxygen vacancies in the BTO crystals and a simultaneous improvement in the crystallinity of GO through chemical reduction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.