Abstract

BackgroundSpina bifida, a neurological defect, can result in lower-limb muscle weakness. Altered ambulation and reduced musculoskeletal loading can yield decreased bone strength in individuals with spina bifida, yet individuals who remain ambulatory can exhibit normal bone outcomes. Research questionDuring walking, how do lower-limb joint kinematics and moments and tibial forces in independently ambulatory children with spina bifida differ from those of children with typical development? MethodsWe retrospectively analyzed data from 16 independently ambulatory children with spina bifida and 16 children with typical development and confirmed that tibial bone strength was similar between the two groups. Plantar flexor muscle strength was measured by manual muscle testing, and 14 of the children with spina bifida wore activity monitors for an average of 5 days. We estimated tibial forces at the knee and ankle using motion capture data and musculoskeletal simulations. We used Statistical Parametric Mapping t-tests to compare lower-limb joint kinematic and kinetic waveforms between the groups with spina bifida and typical development. Within the group with spina bifida, we examined relationships between plantar flexor muscle strength and peak tibial forces by calculating Spearman correlations. ResultsActivity monitors from the children with spina bifida reported typical daily steps (9656 [SD 3095]). Despite slower walking speeds (p = 0.004) and altered lower-body kinematics (p < 0.001), children with spina bifida had knee and ankle joint moments and forces similar to those of children with typical development, with no detectable differences during stance. Plantar flexor muscle weakness was associated with increased compressive knee force (p = 0.002) and shear ankle force (p = 0.009). SignificanceHigh-functioning, independently ambulatory children with spina bifida exhibited near-typical tibial bone strength and near-typical step counts and tibial load magnitudes. Our results suggest that the tibial forces in this group are of sufficient magnitudes to support the development of normal tibial bone strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.