Abstract
In neural electrophysiology, spike sorting allows to separate different neurons from extracellularly measured recordings. It is an essential processing step in order to understand neural activity and it is an unsupervised problem in nature, since no ground truth information is available. There are several available spike sorting packages, but many of them require a manual intervention to curate the results, which makes the process time consuming and hard to reproduce. Here, we focus on high-density Multi-Electrode Array (MEA) recordings and we present a fully automated pipeline based on Independent Component Analysis (ICA). While ICA has been previously investigated for spike sorting, it has never been compared with fully automated state-of-the-art algorithms. We use realistic simulated datasets to compare the spike sorting performance in terms of complexity, signal-to-noise ratio, and recording duration. We show that an ICA-based fully automated spike sorting approach can be a viable alternative approach due to its precision and robustness, but it needs to be optimized for time constraints and requires sufficient density of electrodes to cover active neurons in the proximity of the MEA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.