Abstract

Vitelline envelopes are composed of glycoproteins that participate in sperm-egg interactions during the initial stages of fertilization. In Xenopus laevis, the vitelline envelope is composed of at least 4 glycoproteins (ZPA, ZPB, ZPC, and ZPX). A sperm binding assay involving the covalent coupling of envelope glycoproteins to silanized glass slides was developed. In our assay, sperm bound to the egg envelopes derived from oviposited eggs but not activated eggs. The majority of the egg envelope ligand activity for sperm binding was derived from the complex N-linked oligosaccharides of ZPC. This sperm binding involved N-acetylglucosamine and fucose residues, as binding was abolished after treatment with cortical granule beta-N-acetylglucosaminidase and commercial beta-N-acetylglucosaminidases and was reduced by 44% after treatment with alpha-fucosidase. Although both the envelope glycoproteins ZPA and ZPC possessed independent ligand activity, ZPC was the major ligand for sperm binding (75%). Mixing of isolated ZPA, ZPB, and ZPC in a ratio of 1:4:4 (equal to that in the egg envelope) resulted in sperm binding that was greater than that of the sum of the separate components. The egg glycoproteins acted in synergy to increase sperm binding. Thus, ZPC possessed both independent and hetero-oligomeric-dependent ligand activities for sperm binding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call