Abstract
We consider all combinatorially possible systems corresponding to subsets of finite set theory (i.e., Zermelo-Fraenkel set theory without the axiom of infinity) and for each of them either provide a well-founded locally finite graph that is a model of that theory or show that this is impossible. To that end, we develop the technique of axiom closure of graphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.