Abstract

An inexact Newton algorithm for large sparse equality constrained non-linear programming problems is proposed. This algorithm is based on an indefinitely preconditioned smoothed conjugate gradient method applied to the linear KKT system and uses a simple augmented Lagrangian merit function for Armijo type stepsize selection. Most attention is devoted to the termination of the CG method, guaranteeing sufficient descent in every iteration and decreasing the number of required CG iterations, and especially, to the choice of a suitable preconditioner. We investigate four preconditioners, which have 2 × 2 block structure, and prove theoretically their good properties. The efficiency of the inexact Newton algorithm, together with a comparison of various preconditioners and strategies, is demonstrated by using a large collection of test problems. © 1998 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.