Abstract

Exercise stress testing is used to detect myocardial ischaemia, but is limited by low sensitivity and specificity. The authors investigated the value of the analysis of high-frequency QRS components as a marker of abnormal depolarization in addition to standard ST-deviations as a marker of abnormal repolarization to improve the diagnostic accuracy. Consecutive patients undergoing bicycle exercise stress nuclear myocardial perfusion imaging were prospectively enrolled. Presence of myocardial ischaemia, the primary diagnostic endpoint, was adjudicated using MPI and coronary angiography. Automated high-frequency QRS analysis was performed in a blinded fashion. The prognostic endpoint was major adverse cardiac events (MACEs) during two years of follow-up. Exercise-induced ischaemia was detected in 147/662 patients (22%). The sensitivity of high-frequency QRS was similar to ST-deviations (46% vs. 43%, p=0.59), while the specificity was lower (75% vs. 87%, p<0.001). The combined use of high-frequency QRS and ST-deviations classified 59% of patients as 'rule-out' (both negative), 9% as 'rule-in' (both positive) and 32% in an intermediate zone (one test positive). The sensitivity for 'rule-out' and the specificity for 'rule-in' improved to 63% and 97% compared with ST-deviation analysis alone (both p<0.001). MACE-free survival was 90%, 80% and 42% in patients in the 'rule-out', intermediate and 'rule-in' groups (p<0.001). After adjustment for age, gender, ST-deviations and clinical post-test probability of ischaemia, high-frequency QRS remained an independent predictor for the occurrence of MACEs. The use of high-frequency QRS analysis in addition to ST-deviation analysis improves the diagnostic accuracy during exercise stress testing and adds independent prognostic information.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call