Abstract
The objective function in the nonsmooth optimization model of the clusterwise linear regression (CLR) problem with the squared regression error is represented as a difference of two convex functions. Then using the difference of convex algorithm (DCA) approach the CLR problem is replaced by the sequence of smooth unconstrained optimization subproblems. A new algorithm based on the DCA and the incremental approach is designed to solve the CLR problem. We apply the Quasi-Newton method to solve the subproblems. The proposed algorithm is evaluated using several synthetic and real-world data sets for regression and compared with other algorithms for CLR. Results demonstrate that the DCA based algorithm is efficient for solving CLR problems with the large number of data points and in particular, outperforms other algorithms when the number of input variables is small.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have