Abstract
We present an incremental graph-based clustering algorithm whose design was motivated by a need to extract and retain meaningful information from data streams produced by applications such as large scale surveillance, network packet inspection and financial transaction monitoring. To this end, the method we propose utilises representative points to both incrementally cluster new data and to selectively retain important cluster information within a knowledge repository. The repository can then be subsequently used to assist in the processing of new data, the archival of critical features for off-line analysis, and in the identification of recurrent patterns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.