Abstract

Automation of data collection using online resources has led to significant changes in traditional practices of social network analysis. Social network analysis has been an active research field for many decades; however, most of the early work employed very small datasets. In this paper, a number of issues with traditional practices of social network analysis in the context of dynamic, large-scale social networks are pointed out. Given the continuously evolving nature of modern online social networking, we postulate that social network analysis solutions based on incremental algorithms will become more important to address high computation times for large, streaming, over-time datasets. Incremental algorithms can benefit from early pruning by updating the affected parts only when an incremental update is made in the network. This paper provides an example of this case by demonstrating the design of an incremental closeness centrality algorithm that supports efficient computation of all-pairs of shortest paths and closeness centrality in dynamic social networks that are continuously updated by addition, removal, and modification of nodes and edges. Our results obtained on various synthetic and real-life datasets provide significant speedups over the most commonly used method of computing closeness centrality, suggesting that incremental algorithm design is a fruitful research area for social network analysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.