Abstract
Graphene is a 2D hexagonal lattice structure of sp2 carbon atoms which has been acknowledged for its superior electrical, mechanical, and thermal properties. Production of graphene in large scale and low cost are attracting topic in recent years. Previous study shows that production of graphene from biomass via pyrolysis has low yield of graphene. In this study, we produced graphene sheets from oil palm empty fruit bunch via two-stages pyrolysis to increase the yield. The produced graphene sheets were characterized by scanning electron microscopy, transmission electron microscopy, Raman scattering, and X-ray diffraction. Surface properties (i.e. effective surface areas, pore volumes, and pore size distributions) were studied by nitrogen adsorption–desorption measurements. Effect of the first stage temperature of pyrolysis on the yield, structure, and properties of graphene has been investigated. Our result indicated that two-stages pyrolysis could increase the yield of graphene up to 70%. Graphene sheets shows favorable features of nanosheet frameworks (4–10 atomic layers) and high surface area (870 m2 g−1).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.