Abstract
SummaryThe endeavors to develop manufacturing methods that can enhance polymer and composite structures in spacecraft have led to much research and innovation over many decades. However, the thermal stability, intrinsic material stress, and anisotropic substrate properties pose significant challenges and inhibit the use of previously proposed solutions under extreme space environment. Here, we overcome these issues by developing a custom-designed, plasma-enhanced cross-linked poly(p-xylylene):diamond-like carbon superlattice material that enables enhanced mechanical coupling with the soft polymeric and composite materials, which in turn can be applied to large 3D engineering structures. The superlattice structure developed forms an integral part with the substrate and results in a space qualifiable carbon-fiber-reinforced polymer featuring 10–20 times greater resistance to cracking without affecting the stiffness of dimensionally stable structures. This innovation paves the way for the next generation of advanced ultra-stable composites for upcoming optical and radar instrument space programs and advanced engineering applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.