Abstract

A variety of heterogeneous catalysts for the radical chain oxidation of cyclohexane has been prepared by immobilization of the well-defined cobalt acetate oligomers [py(3)Co(3)(mu(3)-O)(OH)(O(2)CCH(3))(5)](PF(6)) (1) and [py(4)Co(2)(OH)(2)(O(2)CCH(3))(3)](PF(6)) (2) on carboxy-modified mesoporous silica supports A-D by carboxylate exchange. The catalytic oxidation of cyclohexane with tert-butyl hydroperoxide (TBHP) in the presence of these homogeneous and immobilized cobalt acetate complexes afforded the corresponding alcohol and ketone in high yield. The immobilization of 1 and 2 results in a significant increase of catalytic activity. TBHP acts as a radical initiator and as source of molecular oxygen, which is also involved in the overall oxidation process. The rate of cyclohexane conversion is limited by the diffusion of molecular oxygen, and steady-state concentrations of cyclohexanone (K, ketone) and cyclohexanol (A, alcohol) are established; these determine the maximum K:A ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.