Abstract

Systematic density functional theory studies and model analyses have been used to show that the band gap of iron pyrite (FeS(2)) can be increased from ~1.0 to 1.2-1.3 eV by replacing ~10% of the sulfur atoms with oxygen atoms (i.e., ~10% O(S) impurities). O(S) formation is exothermic, and the oxygen atoms tend to avoid O-O dimerization, which favors the structural stability of homogeneous FeS(2-x)O(x) alloys and frustrates phase separation into FeS(2) and iron oxides. With an ideal band gap, absence of O(S)-induced gap states, high optical absorptivity, and low electron effective mass, FeS(2-x)O(x) alloys are promising for the development of pyrite-based heterojunction solar cells that feature large photovoltages and high device efficiencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.