Abstract

Most current approaches in the evolutionary multiobjective optimization literature concentrate on adapting an evolutionary algorithm to generate an approximation of the Pareto frontier. However, finding this set does not solve the problem. The decision-maker still has to choose the best compromise solution out of that set. Here, we introduce a new characterization of the best compromise solution of a multiobjective optimization problem. By using a relational system of preferences based on a multicriteria decision aid way of thinking, and an outranked-based dominance generalization, we derive some necessary and sufficient conditions which describe satisfactory approximations to the best compromise. Such conditions define a lexicographic minimum of a bi-objective optimization problem, which is a map of the original one. The NOSGA-II method is a NSGA-II inspired efficient way of solving the resulting mapped problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.