Abstract

In this paper, we apply EMO (Evolutionary Multiobjective Optimization) algorithms with a generalized dominance relation-based local search (GDR-LS) procedure to MOO (Multi-Objective Optimization) test problems. In the GDR-LS procedure, we generalize the Pareto dominance relation, which is usually used to determine Pareto optimal solutions for MOO problems, for accepting candidate solutions in the local search. We have already applied EMO algorithms with the GDR-LS procedure to well-known multi-objective knapsack problems. In this paper, we examine the effectiveness of the GDR-LS procedure in EMO algorithms through computational experiments on function optimization problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.