Abstract
The thick cell wall and low astaxanthin productivity were two important bottlenecks limiting industrial production of astaxanthin via Haematococcus pluvialis. This study reports a strategy for increasing production and bio-accessibility of astaxanthin in H. pluvialis by screening and culturing red motile cells under high light condition. Compared with the original strain NBU489, the biomass of the novel isolated strain RMS10 increased by 31.9% under low light condition, and the astaxanthin content (44.6 mg/g) increased by 53.3% after 9-day high light induction, which were readily extracted and digested without cell disruption. Subsequent transcriptomic analysis confirmed the accumulation of astaxanthin and lipids in RMS10 cells as expression of genes associated with biosynthesis of fatty acid and astaxanthin were up-regulated, while those involved in thick cell wall biosynthesis and reactive oxygen species scavenging were down-regulated in RMS10. Collectively, this study provides a simple and effective method for economical production of natural astaxanthin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.