Abstract

The occurrence of NADP+-dependent malic enzymes (NADP+-MEs) in several Rhodococcus strains was analysed. The NADP+-ME number in Rhodococcus genomes seemed to be a strain-dependent property. Total NADP+-ME activity increased by 1.8- and 2.6-fold in the oleaginous Rhodococcus jostii RHA1 and Rhodococcus opacus PD630 strains during cultivation under nitrogen-limiting conditions. Total NADP+-ME activity inhibition by sesamol resulted in a significant decrease of the cellular biomass and lipid production in oleaginous rhodococci. A non-redundant ME coded by the RHA1_RS44255 gene located in a megaplasmid (pRHL3) of R. jostii RHA1 was characterized and its heterologous expression in Escherichia coli resulted in a twofold increase in ME activity in an NADP+-dependent manner. The overexpression of RHA1_RS44255 in RHA1 and PD630 strains grown on glucose promoted an increase in total NADP+-ME activity and an up to 1.9-foldincrease in total fatty acid production without sacrificing cellular biomass. On the other hand, its expression in Rhodococcus fascians F7 grown on glycerol resulted in a 1.3-1.4-foldincrease in total fatty acid content. The results of this study confirmed the contribution of NADP+-MEs to TAG accumulation in oleaginous rhodococci and the utility of these enzymes as an alternative approach to increase bacterial oil production from different carbon sources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call