Abstract

The intensification of the hydrological cycle has increased heavy rainfall and drought events in a changing climate. However, compared to drought, the impacts of heavy rainfall on crop production are under-studied. Using field experimental data and a calibrated crop model CYGMA, we showed that excessive soil water associated with heavy rainfall events is having a detrimental effect on cowpea yields, even in the dry environments of West Africa where cowpea is an important, protein-rich cash crop. Cowpea yields are susceptible to heavy rainfall in areas with poorly drained soils, and to drought in soils that have a low water-retention capacity. The crop model captured of the main characteristics of the observed development, growth, and yield, as well as the characteristics of root-zone soil water contents and how they vary by soil type. The analysis of d4PDF factual and counterfactual climate model simulations revealed that heavy rainfall events associated with anthropogenic climate change have increased in recent decades, and that they are projected to increase in future. Further, changes in seasonal rainfall and the number of dry days would be largely absent from CMIP6 climate projections by mid-century. Reductions in cowpea yields due to excessive soil water is projected to become more frequent, and the potential damage in a 1-in-100 extremely wet year would be comparable to the damage currently experienced in droughts, irrespective of soil types. Simulations of the projected damage due to drought show that the situation will be similar to current levels, with drought remaining a major climate hazard. However, excessive soil water is projected to be a serious threat to food security in the region. Our findings indicate that, even in dry environments, cropping systems need to be implemented in order to reduce the susceptibility of soils to both drought and excessive soil water.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.