Abstract

Calculating the magnetic interaction between magnetic particles that are positioned in close proximity to one another is a surprisingly challenging task. Exact solutions for this interaction exist either through numerical expansion of multipolar interactions or through solving Maxwell’s equations with a finite element solver. These approaches can take hours for simple configurations of three particles. Meanwhile, across a range of scientific and engineering problems, machine learning approaches have been developed as fast computational platforms for solving complex systems of interest when large data sets are available. In this paper, we bring the touted benefits of recent advances in science-based machine learning algorithms to bear on the problem of modeling the magnetic interaction between three particles. We investigate this approach using diverse machine learning systems including physics informed neural networks. We find that once the training data has been collected and the model has been initiated, simulation times are reduced from hours to mere seconds while maintaining remarkable accuracy. Despite this promise, we also try to lay bare the current challenges of applying machine learning to these and more complex colloidal systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.