Abstract

Iron (Fe) deficiency is endemic worldwide. Little data are available regarding acute effects of dietary protein on intestinal Fe absorption. The current study evaluated the short-term effects of increasing dietary protein on Fe absorption and expression of genes involved in Fe homeostasis. Sprague Dawley rats (24, female) were randomly assigned to custom-formulated isocaloric diets containing 40, 20 (control), or 5% protein (as percentage of total kilocalories) for 7 d. Whole-body Fe balance studies demonstrated that Fe retention was greater in the 40% group than in the 5% group (30.8 vs. 7.3%; P<0.01). In a separate study utilizing stable iron isotopes, the 40% group absorbed 30% of ingested Fe, while the 20% group absorbed 18% (P=0.005). Whole-genome profiling revealed that increasing dietary protein from 5 to 40% increased duodenal transcript expression of divalent metal transporter 1 (DMT1) 3.2-fold, duodenal cytochrome b (Dcytb) 1.8-fold, and transferrin receptor (TfR) 1.8-fold. Consistent with these findings, DMT1 transcript expression was 4-fold higher in RNA prepared from duodenal mucosa in the 40% group compared to the 20% group (P<0.001). These data suggest that increasing dietary protein increases intestinal Fe absorption in part by up-regulating DMT1, Dcytb, and TfR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.