Abstract

Aluminum scandium alloys and their intermetallic phases have arisen as potential candidates for the next generation of electrical interconnects. In this work, we measure the in-plane thermal conductivity and electron–phonon coupling factor of aluminum scandium alloy thin films deposited at different temperatures, where the temperature is used to control the grain size and volume fraction of the Al3Sc intermetallic phase. As the Al3Sc intermetallic formation increases with higher deposition temperature, we measure increasing in-plane thermal conductivity and a decrease in the electron–phonon coupling factor, which corresponds to an increase in grain size. Our findings demonstrate the role that chemical ordering from the formation of the intermetallic phase has on thermal transport.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call