Abstract

Reaggregating cell cultures of neonatal mouse cerebellar cells express many of the differentiated properties of normal developing cerebellum, including the transition for the embryonic and adult isozymes of l-glycerol 3-phosphate dehydrogenase (EC 1.1.1.8). In order to determine the mechanism leading to increased levels of adult isozyme, aggregates in culture from 2 to 17 days were labeled with radioactive leucine and the relative rate of enzyme synthesis was measured after purification of the enzyme by affinity chromatography on Blue Sepharose 6B. During the course of in vitro differentiation, the relative rate of synthesis increased 100-fold, such that it represented 0.5% of the total protein synthesized in the cytoplasmic fraction of the cell. In vivo, BALB cBy mice have twice the level of enzyme activity in the cerebellum as do C57BL 6J mice. Reaggregating cell cultures of cerebellar cells from these strains of mice also express a difference in the activity level, but only when the cerebellar cells are taken from mice 4 days of age or less. When the relative rates of synthesis of l-glycerol 3-phosphate dehydrogenase were measured in cultures expressing the strain-dependent difference in activity, these rates were found to be approximately twofold greater in cultures of BALB cBy cells. In contrast, estimates of the relative rate of enzyme degradation by the double-isotope labeling technique indicate that neither specific enzyme degradation nor degradation of total protein is different in aggregates from the two strains of mice. The results suggest that the genetic mechanisms controlling the levels of l-glycerol 3-phosphate dehydrogenase in the cerebellum during development are intrinsic to the cells and, with the exception of serum factors, are independent of systemic influences.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call