Abstract

Excitability of rat dorsal root axons were studied 3 weeks after injury to the sciatic nerve. Whole nerve recordings were obtained from injured and control nerves in a sucrose gap chamber. Constant current depolarization pulses (30-200 ms) applied approximately 50% above the stimulus strength required for maximal amplitude compound action potentials (CAPs) evoked a burst of action potentials in the dorsal root which displayed spike adaptation. The depolarization-induced burst response of the dorsal roots was greatly reduced after crush or transection of the sciatic nerve. However, application of the potassium channel blocker, tetraethylammonium (TEA), restored the burst discharge in injured dorsal root axons. Brief tetanic stimulation of the dorsal root also induced an afterhyperpolarization (AHP) that was twice as large in the transection group as compared to the control group, and which was blocked by TEA. There were no changes seen in the amplitude of the compound action potential, frequency-following characteristics, refractory properties, or 4-AP sensitivity in the dorsal roots after peripheral nerve injury. These results suggest that there is enhanced spike adaptation that occurs at the same time as an increase in the sensitivity to the potassium channel blocker, TEA, in axon regions proximal to the site of nerve injury and have implications for the pathophysiology of nerve injury.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.