Abstract

This study aimed to investigate LDL subfraction distribution as well as serum cholesteryl ester transfer protein (CETP), lecithin-cholesterol acyltransferase (LCAT), and paraoxonase (PON1) activity in streptozotocin-induced diabetic guinea pigs. Materials/Methods. Guinea pigs were given a single intraperitoneal (ip) injection of streptozotocin (STZ) and animals having fasting blood glucose levels greater than 200 mg/dl, were considered diabetic. Protein levels of LCAT and CETP were determined via ELISA. Paraoxonase activity was measured kinetically by the formation of phenol while LDL subfraction analysis was done by disc polyacrylamide gel electrophoresis. Results. Plasma glucose and high-density lipoprotein (HDL) cholesterol were significantly increased while total cholesterol and LDL cholesterol were significantly decreased in diabetic guinea pigs compared to controls. LDL subfraction analysis revealed a significant decrease in nonatherogenic LDL-2 subfraction and a significant increase in atherogenic LDL-4 subfraction in diabetic guinea pigs compared to controls. Plasma CETP and PON1 levels were significantly decreased while LCAT showed no significant difference in diabetic guinea pigs compared to controls. Conclusion. Decreased non-atherogenic LDL-1, LDL-2 subfractions, increased small dense LDL-4 subfraction, and decreased PON1 activity, reveals formation of an atherogenic risk in diabetic guinea pigs. Decrease in CETP levels supports the observed increase in HDL cholesterol levels in diabetic guinea pigs.

Highlights

  • Type 1 diabetic patients, even those who are normolipidemic, present increased risk of premature atherosclerosis

  • Plasma cholesteryl ester transfer protein (CETP) and Paraoxonase STZ (PON1) levels were significantly decreased while lecithin-cholesterol acyltransferase (LCAT) showed no significant difference in diabetic guinea pigs compared to controls

  • We aimed to investigate Low-density lipoprotein lipoprotein lipase (LPL) (LDL) subfraction distribution as well as serum CETP and LCAT in streptozotocin-induced diabetic guinea pigs

Read more

Summary

Introduction

Type 1 diabetic patients, even those who are normolipidemic, present increased risk of premature atherosclerosis. This suggests that normal values in lipid profile can mask alterations in the composition and distribution of the denser LDL subclasses, whose characteristics make them potentially more atherogenic [1]. Pattern B shows a predominance of small, dense LDL particles, while pattern A reveals a higher proportion of large, more buoyant LDL particles. Irrespective of the approach used to characterize LDL particles and of the case definition, dense LDL particles were more prevalent among IHD case patients than among IHD-free control subjects [1]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call