Abstract

While an increased oxygen consumption is accepted as one consequence of hyperthyroidism, only few data are available on the role of anaerobic processes for the increased metabolic activity in this disease. In this study we evaluated the relative importance of anaerobic and aerobic metabolism for the metabolic activity in lymphocytes from patients before and after treatment for hyperthyroidism. Total lymphocyte heat production rate (P), reflecting total cell metabolic activity, was determined in a plasma lymphocyte suspension using direct microcalorimetry. The contribution from aerobic metabolism (O2-P) was calculated from the product of the lymphocyte oxygen consumption rate and the enthalpy change for glucose combustion, and the anaerobic contribution as the difference between P and O2-P. The total lymphocyte heat production rate P was 3.37 +/- 0.25 (SEM) pW/cell (N = 11) before and 2.50 +/- 0.11 pW/cell (N = 10) after treatment for hyperthyroidism (p < 0.01) as compared to 2.32 +/- 0.10 pW/cell in a control group (N = 18). The aerobic component O2-P amounted to 1.83 +/- 0.11 pW/cell in the patient group before and 1.83 +/- 0.08 pW/cell after treatment and to 1.71 +/- 0.16 pW/cell in 10 controls. Out of P, the O2-P component corresponded to 56.8 +/- 4.4% in the hyperthyroid state and to 73.7 +/- 3.2% after treatment (p < 0.01) as compared to 73.4 +/- 4.4% in the 10 euthyroid controls. It was concluded that the increased metabolic activity demonstrated in lymphocytes from hyperthyroid patients cannot be explained by an increased oxygen-dependent consumption.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call