Abstract
To elucidate the possible effect of NFkappaB on radioresistance, we used the osteosarcoma cell line Saos2, stably expressing the NFkappaB constitutive inhibitor, mIkappaB (Saos2-mIkappaB) or stably transfected with the empty vector (Saos2-EV). Ionizing radiation induced "intrinsic" apoptosis in Saos2-mIkappaB cells but not in Saos2-EV control cells, with intact NFkappaB activity. We find as expected, that this NFkappaB activity was enhanced following irradiation in the Saos2-EV control cells. On the other hand, inhibition of NFkappaB signaling in Saos2-mIkappaB cells led to the upregulation of the pro-apoptotic systems, such as Bax protein and c-Jun N-terminal Kinase (JNK)/c-Jun/AP1 signaling. Inhibition of NFkappaB resulted in decreased expression of the DNA damage protein GADD45beta, a known inhibitor of JNK. Subsequently, JNK activation of c-Jun/AP-1 proteins increased radiation-induced apoptosis in these mutants. Radiation-induced apoptosis in Saos2-mIkappaB cells was inhibited by the JNK specific inhibitor SP600125 as well as by Bcl-2 over-expression. Furthermore, release of cytochrome-c from mitochondria was increased and caspase-9 and -3 were activated following irradiation in Saos2-mIkappaB cells. Antisense inhibition of GADD45beta in Saos2-EV cells significantly enhanced apoptosis following irradiation. Our results demonstrate that radioresistance of Saos2 osteosarcoma cells is due to NFkappaB-mediated inhibition of JNK. Our study brings new insight into the mechanisms underlying radiation-induced apoptosis of osteosarcoma, and may lead to development of new therapeutic strategies against osteosarcoma.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.