Abstract

Although Rolling mouse Nagoya (RMN) has been considered to demonstrate cerebellar dysfunction, our previous metabolic and electrophysiological studies also revealed a dysfunction of the basal ganglia, with the presumable primary site of dysfunction being the striatum. In the present study., we investigated the neurochemical functions of the striatum. In RMN, both preproenkephalin mRNA and preprotachykinin mRNA increased significantly in the striatum, with unaltered GAD mRNA, [ 3H]spiperone binding, [ 3H]QNB binding and preprosomatostatin mRNA, thus indicating the dysfunction of striatal projection neurons. These findings support the hypothesis that the site of primary dysfunction in the basal ganglia is in the striatum of RMN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.