Abstract

Abstract Experiments with Whole Atmosphere Community Climate Model (WACCM) under perpetual January conditions indicate that stratospheric sudden warmings (SSWs) are twice as likely to occur in El Niño winters than in La Niña winters, in basic agreement with the limited observational dataset. Tropical SST anomalies that mimic El Niño and La Niña lead to changes in the shape of probability distribution functions (PDFs) of stratospheric day-to-day variability, resulting in a warmer pole and weaker vortex on average for El Niño conditions. The tropical SST forcing induces a response similar to the observed response in the enhancement of the planetary wave of zonal wavenumber 1 (wave 1) and the weakening of wave 2 in the upper troposphere and stratosphere of high latitudes. The enhanced wave 1 contributes to a shift of the PDFs of poleward eddy heat flux in the lower stratosphere, or wave forcing entering the stratosphere. The shift of the PDFs includes an increase of strong wave events that induce more frequent SSWs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call