Abstract

The roles of planetary waves (PWs) and gravity waves (GWs) are examined during a realistic major stratospheric sudden warming (SSW), simulated in the National Center for Atmospheric Research Whole Atmosphere Community Climate Model (WACCM). This major SSW event is characterized by a well-separated polar stratopause during a wind-reversal period. Formed by adiabatic warming induced by westward GW drag, the early-winter stratopause layer appears at its climatological level. With the incipient wind reversal and SSW onset, this layer plunges ∼20km in time, as the amplified PW interacts with the mean flow. The SSW recovery starts in the upper mesosphere as GW drag becomes eastward due to the filtering effects of the underlying wind. During this recovery, the stratopause reforms at an elevated altitude due to adiabatic warming induced by strong upper mesospheric PW forcing. Intensified downward motion from the mesosphere then ensues as the stratopause descends toward its climatological position.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.