Abstract

BackgroundSeveral kinds of anti-oxidants have drawn a lot of intension for their benefits on vascular protection. In addition, it has been demonstrated that exercise training could improve endothelial function by up-regulating endothelial nitric oxide synthase (eNOS) protein. Therefore, the present study aims to investigate the effects of genistein, a potent phyto-antioxidant, and exercise training on age-induced endothelial dysfunction in relation to NO bioavailability using in situ NO-sensitive fluorescent dye detection.MethodsMale Wistar rats (20-22-month old) were divided into four groups: aged rats treated with corn oil, (Aged+Veh, n = 5), aged rats treated with genistein (Aged+Gen, n = 5, (0.25 mg/kg BW/day, s.c.)), aged rats with and without exercise training (Aged+Ex, n = 5, swimming 40 min/day, 5 days/week for 8 weeks) (Aged+Without-Ex, n = 5). Cremaster arterioles (15-35 micrometer) were visualized by fluorescein isothiocyanate labeled dextran (5 microgram/ml). The vascular response to acetylcholine (Ach; 10-5M, 5 ml/5 min) was accessed after 1-min norepinephrine preconstriction (10 micro molar). To determine NO bioavailability, the Krebs-Ringer buffer with 4, 5-diaminofluorescein-diacetate (3 micro molar DAF-2DA), and 10 micro- molar Ach saturated with 95%N2 and 5%CO2 were used. Changes of DAF-2T-intensities along the cremaster arterioles were analyzed by the Image Pro-Plus Software (Media Cybernatics, Inc, USA). Liver malondialdehyde (MDA) level was measured by thiobarbituric acid reaction and used as an indicator for oxidative stress.ResultsThe results showed that means arterial blood pressure for both Aged+Gen and Aged+Ex groups were significantly reduced when compared to the Aged groups, Aged+Veh and Aged+Without-Ex (P < 0.05). Among the treated groups, Ach-induced vasodilatation were significantly increased (P < 0.05) and was associated with increased NO-associated fluorescent intensities (P < 0.05). On the other hand, MDA levels were significantly reduced (P < 0.05) when Aged+Veh was compared to Aged+Without-Ex.ConclusionThese findings showed that genistein and exercise training could improve age-induced endothelial dysfunction and is related to the increased NO bioavailability.

Highlights

  • Several kinds of anti-oxidants have drawn a lot of intension for their benefits on vascular protection

  • The old rats were randomly divided into four groups: aged rats treated with corn oil (Aged+Veh (n = 5); Sigma-Aldrich Co., USA), aged rats treated with genistein

  • In Aged+Ex group, the ratio of seminal vesicle/body weight was significantly higher than the Aged+Without-Ex group (Aged+Ex = 0.0042 ± 0.0006, Aged+Without-Ex = 0.0023+0.0018) (P < 0.05). This may be due to the effect of exercise training on the fat composition, because there were no significant differences between seminal vesicle weight of the Aged+Ex and Aged+Without-Ex groups

Read more

Summary

Introduction

Several kinds of anti-oxidants have drawn a lot of intension for their benefits on vascular protection. The present study aims to investigate the effects of genistein, a potent phyto-antioxidant, and exercise training on age-induced endothelial dysfunction in relation to NO bioavailability using in situ NO-sensitive fluorescent dye detection. From epidemiological and experimental studies, they have shown that an increased superoxide (O2-) production with advancing age causes oxidative stress and leads to the development of endothelial dysfunction [510]. We evaluate the effects of genistein and exercise training on protecting endothelial cells against age-induced oxidative stress by using a fluorescent indicator-diaminofluorescein (DAFs). This technique allowed us to examine the in situ release of NO from cremasteric endothelial cells after acetylcholine activation

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call