Abstract

Previous observations of metastable magnetic skyrmions have shown that close to the equilibrium pocket the metastable state has a short lifetime, and therefore rapid cooling is required to generate a significant skyrmion population at low temperatures. Here, we report that the lifetime of metastable skyrmions in Cu$_2$OSeO$_3$ is extended by a factor of 50 with the introduction of only 2.5% zinc doping, allowing over 50% of the population to survive when field-cooling at a rate of just 1 K/min. Our systematic study suggests that the lifetime enhancement is due to the removal of spins by the non-magnetic dopant, which entropically limits the number of skyrmion decay pathways. We expect that doping can be exploited to control the lifetime of the metastable SkL state in other chiral magnets, offering a method of engineering skyrmion materials towards application in future devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.