Abstract

1alpha,25-Dihydroxyvitamin D3 administration to rachitic chicks results in an increase in the chromatin template activity of intestinal target tissue assayed in vitro using Escherichia coli RNA polymerase. The maximum stimulation of template capacity was 12 to 20% over control values and occurred 2 hours after administration of the sterol. This rapid effect preceded the biologic response to 1alpha,25-dihydroxyvitamin D3 in the intestine and was not observed in other tissues such as liver or kidney. The in vivo enhancement of intestinal chromatin template activity was specific for the 1alpha,25-dihydroxyvitamin D3 hormone in that equivalent doses of 25-hydroxyvitamin D3 or vitamin D3 did not elicit a response in 2 to 3 hours. Only 1alpha-hydroxyvitamin D3, a synthetic sterol which is very rapidly metabolized to the 1alpha,25-dihydroxyvitamin D3 form, was able to minic the natural hormone in vivo. To further elucidate the nuclear mechanism of action of 1alpha,25-dihydroxyvitamin D3, the hormone was preincubated at 0 degrees with intestinal cytosol to form hormone-receptor complexes. After addition of the hormone-receptor complexes to purified intestinal mucosa nuclei and incubation for 1 hour at 25 degrees, chromatin isolated from this reconstituted system displayed a significant increase in template activity as compared to chromatin prepared from similar in vitro incubations not containing hormone. This stimulation was 12 to 24% over control values and exhibited an absolute requirement for intestinal cell cytosol. The response was specific for physiologic levels of 1alpha,25-dihydroxyvitamin D3, but occurred with pharmacologic doses of 25-hydroxyvitamin D3. It is concluded that a stimulation of the chromatin template activity of intestinal target tissue by 1alpha,25-dihydroxyvitamin D3 may be an integral part of the ultimate physiologic response of enhanced calcium transport.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.