Abstract

BackgroundPerivascular adipose tissue (PVAT) surrounds most large blood vessels and plays an important role in vascular homeostasis. The present study was conducted to investigate the contribution of PVAT to vascular dysfunction in a rat model of type 2 diabetes. Material and methodsSeveral in vivo parameters such as lipid profile (total cholesterol and triglyceride systemic levels), fasting glucose levels, glucose tolerance and insulin sensitivity (through glucose and insulin tolerance tests, respectively) were determined in Goto-Kakizaki (GK) diabetic rats and compared with control Wistar rats. At the vascular level, endothelial dependent and independent relaxation and contraction studies were performed in aortic rings in the absence (PVAT−) or in the presence (PVAT+) of thoracic PVAT. We also evaluated vascular oxidative stress and performed western blots, PCR and immunohistochemistry analysis of cytokines and various enzymes in PVAT. ResultsEndothelium-dependent relaxation to acetylcholine, assessed by wire myography, was impaired in GK rats and improved by the antioxidant TEMPOL and by the TLR4 inhibitor, CLI-095 suggesting an increase in oxidative stress and inflammation. In addition, vascular superoxide and peroxynitrite production was increased in the vascular wall of diabetic rats, accompanied by reduced nitric oxide bioavailability. The presence of PVAT had an anticontractile effect in response to phenylephrine in Wistar rats that was lost in GK rats. Western blot and immunohistochemistry analysis revealed that PVAT phenotype shifts, under diabetic conditions, towards a proinflammatory (with increment in CRP, CCL2, CD36), pro-oxidant (increased levels of aldose reductase, and reduced levels of antioxidant deference enzymes) and vasoconstriction state. ConclusionOur data suggest that this rat model of type 2 diabetes is associated with perivascular adipose dysfunction that contributes to oxidative stress, inflammation and endothelial dysfunction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.