Abstract

To determine whether the mouse Werner syndrome homologue (Wrn) and the poly (ADP-ribose) polymerase-1 (PARP-1) enzymes act in concert to prevent specific chromosomal rearrangements, mice with a mutation in the helicase domain of the Wrn gene ( Wrn Δhel/Δhel mice) were crossed to PARP-1 null mice. Spectral karyotyping of the mouse metaphases was used in correlation with conventional G-banded karyotype analysis to precisely define the chromosomal aberrations in cells. Although there was no recurrent clonal chromosome aberration, PARP-1 null/ Wrn Δhel/Δhel fibroblasts were distinguished by an increased frequency of chromatid breaks. Interestingly, multiradial structures were the only type of DNA rearrangement that was significantly higher in such PARP-1 null/ Wrn Δhel/Δhel cells. These results indicate that Wrn and PARP-1 enzymes may be part of a protein complex involved in the processing of DNA breaks that can ultimately lead to multiradial structures when both enzymes are nonfunctional. Finally, regions of chromosomes known to be fragile sites in the mouse genome are not more prone to DNA rearrangements in the absence of both PARP-1 and functional Wrn proteins. Moreover, the low number of recurrent rearranged chromosome at any given site suggest a random mutagenesis process in PARP-1 null/ Wrn Δhel/Δhel fibroblasts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.