Abstract

This study investigated the effects of strenuous exercise on transferrin (Tf)-receptor (TfR) expression and Tf-bound iron (Tf-Fe) uptake in erythroblasts of rat bone marrow. Female Sprague-Dawley rats were randomly assigned to either an exercise or sedentary group. Animals in the exercise group swam 2 h/day for 3 mo in a glass swimming basin. Both groups received the same amount of handling. At the end of 3 mo, the bone marrow erythroblasts were freshly isolated for Tf-binding assay and determination of Tf-Fe uptake in vitro. Tissue nonheme iron and hematological iron indexes were measured. The number of Tf-binding sites found in erythroblasts was approximately 674,500 +/- 132,766 and 1,270,011 +/- 235,321 molecules/cell in control and exercised rats, respectively (P < 0. 05). Total Fe and Tf uptake by the cells was also significantly increased in the exercised rats after 30 min of incubation. Rates of cellular Fe accumulation were 5.68 and 2.58 fmol. 10(6) cells(-1). min(-1) in the exercised and control rats, respectively (P < 0.05). Tf recycling time and TfR affinity were not different in exercised and control rats. Increased cellular Fe was mainly located in the stromal fraction, suggesting that most of accumulated Fe was transported to the mitochondria for heme synthesis. The findings demonstrated that the increased cellular Fe uptake in exercised rats was a consequence of the increased TfR expression rather than the changes in TfR affinity and Tf recycling time. The increase in TfR expression and cellular Fe accumulation, as well as the decreased serum Fe concentration and nonheme Fe in the liver and the spleen induced by exercise, probably represented the early signs of Fe deficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.