Abstract

We recently showed that changes of brain activity in the ipsilesional ventral premotor cortex (PMv) and perilesional primary motor cortex (M1) of macaque monkeys were responsible for recovery of manual dexterity after lesioning M1. To investigate whether axonal remodeling is associated with M1 lesion-induced changes in brain activity, we assessed gene expression of growth-associated protein-43 (GAP-43) in motor and premotor cortices. Increased expression was observed in the PMv during the period just after recovery and in the perilesional M1 during the plateau phase of recovery. Time-dependent and brain region-specific remodeling may play a role in functional recovery after lesioning M1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call