Abstract
Adaptive mutation has been studied extensively in FC40, a strain of Escherichia coli that cannot metabolize lactose (Lac-) because of a frameshift mutation affecting the lacZ gene on its episome. recD mutants of FC40, in which the exonuclease activity of RecBCD (ExoV) is abolished but its helicase activity is retained, have an increased rate of adaptive mutation. The results presented here show that, in several respects, adaptive mutation to Lac+ involves different mechanisms in recD mutant cells than in wild-type cells. About half of the apparent increase in the adaptive mutation rate of recD mutant cells is due to a RecA-dependent increase in episomal copy number and to growth of the Lac- cells on the lactose plates. The remaining increase appears to be due to continued replication of the episome, with the extra copies being degraded or passed to recD+ recipients. In addition, the increase in adaptive mutation rate in recD mutant cells is (i) dependent on activities of the single-stranded exonucleases, RecJ and ExoI, which are not required for (in fact, slightly inhibit) adaptive mutation in wild-type cells, and (ii) enhanced by RecG, which opposes adaptive mutation in wild-type cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.