Abstract
Excess dietary sodium is a major contributing factor to the incidence and severity of hypertension. However, the precise mechanism or mechanisms by which salt contributes to the severity of hypertension are unknown. The region of the rostral ventrolateral medulla (RVLM) is a principal brain stem locus critical for the regulation of arterial blood pressure by the sympathetic nervous system. The purpose of this study was to determine if excess dietary sodium chloride might alter the function or responsiveness of neurons in the RVLM. Male Sprague-Dawley rats were given either tap water or 0.9% sodium chloride solution to drink for 10 to 14 days. Excess sodium chloride did not affect baseline blood pressure. However, when neurons of the RVLM were stimulated by microinjections of L-glutamate, evoked increases in arterial pressure were potentiated in rats given sodium chloride. Augmented pressor responses could not be accounted for by increased vascular reactivity because both groups responded similarly to intravenously administered phenylephrine and norepinephrine. Additionally, electrical stimulation of descending spinal sympathoexcitatory axons produced identical pressor responses in both groups, indicating that altered synaptic transmission at central or peripheral neuroeffector junctions distal to the RVLM could not explain enhanced pressor responses produced by direct stimulation of RVLM cell somata. Finally, impaired arterial baroreceptor reflexes could not account for augmented RVLM pressor responses, as depressor and bradycardic responses produced by electrical stimulation of aortic baroreceptor afferents were not reduced in rats given excess dietary sodium chloride.(ABSTRACT TRUNCATED AT 250 WORDS)
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have