Abstract

Uterine quiescence is essential for successful pregnancy. Cholesterol and triglycerides are markedly increased in pregnancy. Cholesterol is enriched in microdomains of the plasma membrane known as rafts and caveolae. Both lipid rafts and caveolae have been implicated in cellular signaling cascades. The purpose of this work was to investigate whether manipulation of cholesterol content alters uterine contractility. Late pregnancy (19-21 days) rats were humanely euthanized and strips of longitudinal myometrium were then dissected. Force and Ca(2+) measurements were simultaneously recorded and cholesterol increased by the addition of 5 mg/ml cholesterol or 0.25 mg/ml low-density lipoproteins (LDLs) or reduced by 2% methyl-beta-cyclodextrin (MCD) or 2 U/ml cholesterol oxidase addition to the perfusate. Both LDLs and cholesterol profoundly inhibited spontaneous uterine force production and associated Ca(2+) transients; frequency, amplitude, and duration of contraction were all significantly reduced compared with preceding control contractions. Force and Ca(2+) were also reduced by cholesterol when 1 nM oxytocin was used to stimulate the myometrium. Uterine activity was significantly increased by cholesterol extraction with MCD or cholesterol oxidase treatment. Electron microscopy confirmed the lipid raft disrupting effect of MCD, as formerly electron microscopy-visible caveolae in the myometrial cell membrane all but disappeared after MCD treatment. These data show that uterine smooth muscle cell cholesterol content is critically important for functional activity. A novel finding of our study is that cholesterol is inhibitory for force generation. It may be one of the mechanisms operating to maintain uterine quiescence throughout gestation and may also contribute to difficulties in labor suffered by obese women.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.